Clicky

Jump to content
macjeff

Red Cherry Shrimp Water Help

Recommended Posts

macjeff

I have had a 20 gallon RCS tank for 3 years now.  I have moss balls and some JAVA moss, drift wood, and mineral rocks.

Only RCS in the tank and some soft shell snails I have in there I breed for my fresh water puffer fish in another tank,.

My issue is that the shrimp live 1-2 years and they breed just fine but I never see babies.  I see plenty of eggs but never babies.  (Well 1 or 2 a month maybe but they disappear)

The adults keep going just fine until they die off of old age or something else.

I keep about 100 shrimp in the tank and have to replenish 50 every 6 months about.

Water Temp I keep about neutral. 

PH- 7- 7.2

I use distilled water or sometimes Reverse Osmosis water because our tap water goes through a water softener which puts a LOT of salt in it which makes TDS very high so I try not to use tap water at all.   

I feed every 2 days with Azoo or other good food and not much.  Its all gone by the time I feed again.

I do add some powder food for the babies and a shrimp bacteria powder (just started that about 6 months ago but has not helped or hurt)

Someone told me due to the distilled water my issue is LOW TDS.  So I bought TWO different meters.  I tested the distilled water and its about zero which is correct.  I then tested my water and its about 700.   I do top offs and just did a 20% water change last weekend with distilled water.

So is that the issue?  Should I pull out the mineral rocks?

I am thinking tonight to take about 8 gallons of water and drain the tank down about 40% and then fill with the distilled water.   I can repeat the process in a week and once I get the TDS under 150 I can add a little shrimp mineral to get it to the 200 range.   The reason I am saying that is the TDS could be bad TDS and not the minerals they needs.  I ordered some Salty Shrimp Mineral which I heard was good.

Should I just give up?

 

Jeff

  • Like 1

Share this post


Link to post
Share on other sites
jayc
6 hours ago, macjeff said:

The adults keep going just fine until they die off of old age or something else.

I keep about 100 shrimp in the tank and have to replenish 50 every 6 months about.

What's old age ? Is that 6 months, 1 year, 2 years?

 

6 hours ago, macjeff said:

I tested the distilled water and its about zero which is correct.  I then tested my water and its about 700.   I do top offs and just did a 20% water change last weekend with distilled water.

So is that the issue?

If you don't remineralise distilled, RO (or rain water) at all with Calcium+Magnesium, then yes, that's the problem. Your water is devoid of life giving minerals. 

The problem with the TDS meter is that it doesn't tell you what dissolved solids you have in the water that makes up the 700ppm. It's is just telling you that the water is high in dissolved solids, and it's time for a water change. 700 is too high for shrimps. Bring it down to 300 +/- 50 for RCS.

That 700ppm reading can be composed of Nitrates, ammonia, metals, salts, etc. The problem now is that you have no idea what that 700ppm is composed of. The reason many shrimp keepers and aquarists use RO water (or distilled or rain water), is for the fact that it is filtered clean of all other impurities in the tap water. 

BUT ! Fish and shrimps cannot live in such pure water. The minerals in their body will seep out into the water as the minerals try to reach equilibrium by way of osmosis. 

So Calcium and Magnesium is required to be added back to such pure water in order to make it liveable for fish or shrimp. 

Now ... when you measure TDS of RO water fortified with Calcium and magnesium, ... whatever reading you get back is made up of Calcium + Magnesium only! Nothing else. No metals, no chlorine, no flouride, no pesticides, fertilisers, nitrates, etc...

 

So you have two primary problems.

1) TDS is too high for RCS

2) Distilled water used without remineralising with Ca/Mg.

 

6 hours ago, macjeff said:

Should I pull out the mineral rocks?

What mineral rocks? Please elaborate.

 

6 hours ago, macjeff said:

The reason I am saying that is the TDS could be bad TDS and not the minerals they needs.  I ordered some Salty Shrimp Mineral which I heard was good.

Should I just give up?

I wrote the above before reading this bit. 

Yep. I agree. That is what you need. 

Don't drop the TDS too quickly! The reason I mentioned above about loosing minerals due to osmosis just gets intensified. 

 

If you want to fix it quick, then use the drip method to reacclimate the shrimp to the new low TDS, remineralised water. 

 

Also check out my DIY remineralising mix in Water Parameters, if you can source your own Calcium Sulfate and Magnesium sulfate (Epsom salts).

Edited by jayc

Share this post


Link to post
Share on other sites
macjeff

first THANK YOU for answering.  OK now your points

 

1. These are the mineral rocks I have in now.   https://www.amazon.com/SunGrow-Mineral-Provide-Magnesium-enhances/dp/B00KMJFCFM/ref=pd_lpo_vtph_199_bs_t_1?_encoding=UTF8&refRID=RWT0BDG3CB0Z9P7MT9CG&dpID=51hBY9liPOL&preST=_SY300_QL70_&dpSrc=detail&th=1

I also ordered some of these......  https://www.amazon.com/gp/product/B06Y2NKRKY/ref=oh_aui_detailpage_o03_s00?ie=UTF8&psc=1

and these    https://www.amazon.com/Salty-Shrimp-Mineral-GH-200g/dp/B00HZLUGSI

 

2.  as far as lowering the TDS.    Its a 20 gallong tank.   Take out 5 gallons (25%) and replace with distilled water?   Then how many days before I do it again.

3. As far as minerals.  The Salty Shrimp Minerals wont be in until next week but as I said I have the Shirakura White Mineral Rocks already in there and the Mironekuton Stone I can put in tomorrow.   I was thinking of bringing the TDS down lower than I want and then adding some water with The Salty Shrimp Mineral in it until its around 200ppm.   Does that sound like a plan?

4. For best breeding what Temp do you recommend for the water?

5. Do you recommend a feeding tube and bowl or scatter food.  I have always scattered.

 

Again thanks a lot!!!

 

Jeff

Share this post


Link to post
Share on other sites
jayc
58 minutes ago, macjeff said:

1. These are the mineral rocks I have in now.

Gotcha. Mironekuton is good and I use them myself. It's meant to release Ca slowly. 

Smash a small piece up with a mortar & pestle, and ground to a powder for faster effects. 

 

Salty Shrimp GH+ is for water changes. 

 

58 minutes ago, macjeff said:

2.  as far as lowering the TDS.    Its a 20 gallong tank.   Take out 5 gallons (25%) and replace with distilled water?   Then how many days before I do it again.

 

58 minutes ago, macjeff said:

3. As far as minerals.  The Salty Shrimp Minerals wont be in until next week but as I said I have the Shirakura White Mineral Rocks already in there and the Mironekuton Stone I can put in tomorrow.   I was thinking of bringing the TDS down lower than I want and then adding some water with The Salty Shrimp Mineral in it until its around 200ppm.   Does that sound like a plan?

For points 2 & 3 - unless you haven't changed water in a while, I would leave it alone until the SS GH+ arrives. Altering the water parameters so much in a short timeframe stresses out the shrimp. 

If you have to, change only 10%.

Once SS GH+ arrives, you can change water in two ways.

1) Big bang - change all the water at once and drip the new treated water back in slowly.

You can either take the shrimp out. Or leave them in the tank. However, you need to think about how you keep the filter and filter media going with aerated tank water during this time (ie. keeping the beneficial bacteria alive).

When I say treated water, I mean change water that is roughly the same temp, TDS adjusted to your desired TDS, and dechlorinated if needed (distilled , RO and rain water does not need to be dechlorinated). 

I assume you are familiar with how to implement the "drip method" and have the necessary items to do it. If not, Google "Drip acclimating"

 

 

2) Change 25% every 3 days over the length of time needed to reach your target TDS. This is safe and the least stressful for the shrimp, but can/will take weeks.

 

<edit> - I suppose I should give you my personal preference. I'm an impatient person. So I would go with #1 big bang theory.  But my reasoning is that ... if I thought the shrimp were suffering healthwise, then I'd like to correct it as quickly as possible. The big bang and drip method will take a while to fill a 20 gal., but it will be much quicker than the 2nd method of changing 25% every 3 days. #1 would still be faster if you changed 25% everyday.

 

58 minutes ago, macjeff said:

4. For best breeding what Temp do you recommend for the water?

22-24deg C (72 - 75deg F)

So yeah, on the cool side. Which shouldn't be a problem right now for N. America.

 

58 minutes ago, macjeff said:

5. Do you recommend a feeding tube and bowl or scatter food.  I have always scattered.

There are benefits to both. So no real preference.

I use a glass feed bowl. But that is only to minimise food dropping into the substrate. Then again, the shrimp will drag food out of the feed bowl to horde it. The little hoarders!  The other benefit of a feed bowl is to draw out the shrimp from their hiding spots. 

But I also scatter powdered food for shrimplets occasionally. Shrimplets get most of their foods from biofilm, so not sure if they benefit from scattered powder foods. So I don't scatter too often.

Edited by jayc

Share this post


Link to post
Share on other sites
macjeff

If I get distilled water in gallon jugs how much Salty GH+ would you use?   Looks like its 1 spoon for 10L so a little less than 1/2 spoon per gallon?

Do you recommend Alder Cones?  

Mulberry Leaves?

Share this post


Link to post
Share on other sites
macjeff

So I did the 25% method and for now just using Distilled or RO water.

Done a change every 2.5 days and went from 750 or so to about 300 now.

I will do another change sunday which should get it down to about 200.

Then starting Monday (When the Salty Shrimp should arrive) I will add that to the water and do another 25% change.

I spoke to the company that makes Salty Shrimp.  I use 1 gallon jugs (milk jugs but from Distilled Water) to mix the salty shrimp.   They said to make the first batch and add a little at a time until it gets to 200-225 ppm.   Then in the future I will know how much to add.   

Since the water is already at 200ish at that point and I do a 25% water change with 200ish Salty Shrimp Water it should remain the same.

Then I will go back to 20% weekly with the salty shrimp and over time any other TDS that is in the initial 200 ppm should come out and what is left will be 200 ppm of salty shrimp and RO water.

Sound like a plan?

 

Anything else I need to add.   I asked About Alder Cones.    And for food I usually do Pellets made for RCH from Shikara or something like that and I alternate with Azoo Max Growth, Max Breed, and Bio Balls.  And then I have some baby shrimp powder I add about once a week (just a pinch).

Thanks again!!

 

Jeff

Share this post


Link to post
Share on other sites
jayc
On 7 February 2018 at 3:36 PM, macjeff said:

Do you recommend Alder Cones?  

Mulberry Leaves?

Alder cones are used to reduce pH. Very effectively too but stains the water.

Mulberry leaves for feeding is highly recommended.

Share this post


Link to post
Share on other sites
macjeff

Did my latest post with plans to complete water changes sound like a plan?

Share this post


Link to post
Share on other sites
jayc
52 minutes ago, macjeff said:

Did my latest post with plans to complete water changes sound like a plan?

Oh yes, sorry, forgot to comment on that part. 

Yes, sounds like a good plan.

When you reach you TDS goal, go to a 10% weekly water change, rather than 20%. 

Share this post


Link to post
Share on other sites
macjeff

And 250-300 is the goal for red cherry shrimp right?

if it gets too low (it’s hard to estimate the amount of RO water to get it 250-300) so do I just add a little extra salty shrimp mineral to bring it up or leave it at under 250 and let it come up on its own?

 

and thanks again.  

Share this post


Link to post
Share on other sites
jayc
7 hours ago, macjeff said:

And 250-300 is the goal for red cherry shrimp right?

if it gets too low (it’s hard to estimate the amount of RO water to get it 250-300) so do I just add a little extra salty shrimp mineral to bring it up or leave it at under 250 and let it come up on its own?

Anywhere between 200-300 for RCS is fine. So don't need to stress too much if you don't hit that smaller target. 300 TDS is the upper limit, that's usually when I change water to bring TDS back down. Don't want to turn shrimp keeping into a chore.

 

If it gets too low, yes, add more SS to bring it back up, but you can wait till the next water change to do that (~ a week later). Don't need to do it straight away. Now that you are close to the ideal range, keeping your parameters constant now is more important that hitting the "bulls eye" TDS by changing parameters too regularly.

 

Edited by jayc

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • Damien Dyer
      By Damien Dyer
      Hi I signed up awhile back but this is my first post so I hope I'm in the right section. I've been keeping crs/cbs for a couple of years now, starting with a dozen and now have approx 200. I have a large 200lt tank and use fluval stratum. My parameters have always been pretty steady, tds 130-150,  ph 6.7-6.8, GH 3-4 and KH 1-2 and have had great sucess but over the last few months my KH is reading zero and the PH has gone from 6.8 to 5.9!! All shrimp are still doing well and no noticeable deaths but the ph drop is concerning. Is this directly related to zero KH? (No buffering) Any advice on the cause and any action that I should take would be very much appreciated. Thank you 
    • Mighty Mite
      By Mighty Mite
      Hi guys. Tried shrimp twice before without much luck, and have some shrimp on the way from aquabid in hopes that the third time will be the charm. I heard that these three species are the easiest ones to keep and that is the main reason I went for them. In the past I kept RCS for about a year and they never did that great but they were in with large fish so no big surprise. There were a few holdouts for some time but eventually they all went the way of the dodo. Next I kept some ghost shrimp in a ten gallon and they were breeding like crazy and doing a great job cleaning up all my filthy plants from the other tanks, but eventually I added in too much plant matter that was too dirty and they all suddenly died off.
      This time they are in a 40 gallon all to themselves with a bunch of moss and aquascaping of various kinds so I hope they will do better. This has an aquabridge to a 60 gallon tank with plants and aquascape and a few small fish in it. I will keep the shrimp and crayfish alone in the 40g tank for now at least. Maybe if they take off enough I will add in a few tiny fish like white clouds and so on that won't affect the shrimp much.
      I believed my tap water parameters were good for virtually all aquarium needs but in some aquabid auction I saw that any kh above 8 would lead to shrimp being unable to molt and eventually kill them. The ghost shrimp actually bred like mad in the 10g, but the cherry shrimp never really took off even though there were lots of places to hide from the big fish. Is this water hardness a serious problem for those guys? RO water is really not an option because I am on a budget. Possibly I can afford to ameliorate the water with chems a bit if it is a serious problem though.
       
    • Dooliga
      By Dooliga
      Greetings shrimp enthusiasts, hobbyists, keepers and those with curiousity and a passing interest,

      I was once one with a passing interest that'd grown into a curiousity and now i'm heading for the keeper stage -- hopefully a keeper of Riffle Shrimp.

      Below is my 36" x 18" x 18" tank. As you can see it's a planted tank. It completed its Nitrogen Cycle today -- it's a happy day that's been a long time in the making. We purchased the tank in Feb of 2015 and what with moving house soon after and our 3rd baby it's taken this long to get to this exciting day. I've had tanks with shrimps before with what I'd describe as limited success, but it's been many years and with the knowledge, equipment and technology that's around today I feel like I've just begun as a new aquarist all over again.

      As yet we have no fish, let alone shrimp, but that is likely to change in the next few days. We intend the tank to be a community one but with a key feature being some shrimp. I saw some Riffles in a display tank in a fish store and was immediately drawn to them well ahead of the various smaller shrimps that they had for sale. They didn't and still don't have any Riffles for sale. I trust that I will one day get some, somehow, so I am aiming to prepare my tank for that time and thought it might be good to ask the SKF Aquatics community for guidance and advice -- not just be a fly on the wall reading other's posts.

      Tank specs:

      36 x 18 x 18 inches (approx 90 x 45 x 45 cm); about 50 gal (190 litres)
      Substrate: ADA Malaya (not a super nutrient rich variety as we plan to have a low tech tank in the long run)
      DW: Golden Vine
      Rocks: Red rock
      Plants: Monte Carlo (Low-tech thriving), three varieties of Crypts, Amazon Sword, Lileopolis, Rotala Walichii, tiny bit of Val, tiny bit of Telanthera, Anubis mini nana
      Fluval 406 Cannister Filter (pretty hi-flow/circulation is how i understand it for my tank size)
      Hydor inline heater
      UP Aqua U Series P LED light
      Hydor Koralia Wavemaker (not used at present)

      Fish/Invertebrates we have in mind (but are by no means fixed choices):

      5 x White Fin Ornate Tetra (a docile, hardy tetra that is highly recommended as a fish for a freshly cycled tank) that aren't schooling, but more shoaling)
      3 x Otocinclus (for algae should it one day inevitably strike)
      1-2 x Chain Loaches (aka dwarf loach) (to deal with some pond snails and is hopefully compatible with Riffles)
      20-ish x Cardinal Tetras (hardy and schooling)
      5-7 x Celestial Pearl Danio
      1-2 x Borneo Catfish
      Pair x Blue Rams
      Colony of Riffles

      Is the above list suitable tank-mates with Riffles? All are pretty docile as I understand it.

      As I said before, the tank just completed cycling. I plan to test its stability, but using ADA Aquasoils they are said to be able to handle a high bio-load once cycled due to their nature to leech a lot of ammonia. If the cycle is stable then it's possible it's ready to load the tank up with quite a bit. 

      January 10 I began the hardscape and the next day planted as much as I could envisage would fit once the plants grow out. We have an 8 hour photoperiod and plants have been growing very well without CO2 or ferts. We have had ZERO algae outbreak (touch wood) aside from a tiny tiny bit of brown algae on the DW along with protein slime, which the pond snail hatch-lings cleaned, feasted, thrived on, and even laid eggs upon already. Water testing 2-3 times a day I have watched and kept a detailed journal of the cycling process.

      Today, as planned for the day the cycle completed,  I dosed the tank for the first time with Seachem Flourish Excel, some Fluval plant food I had from a few years back, and Seachem Equilibrium. The water we have here in Melbourne is quite soft and a TDS meter reading shows that some added salts and minerals were required (I understand that an ideal aim is for TDS reading of 250, but I'm usually under that). I've added coral bone to the cannister filter as PH (ADA Aquasoils cause PH to drop for a while also) needed buffering up to 7.0 neutral. I'll continue to test the water daily to see that stability is maintained. Water temperature has been high at 29 Degrees C to speed up the Nitrogen Cycle process, as has surface agitation, and these I will adjust these lower once I've confirmed that cycle stability. I need to purchase a KH/GH test kit, but understand it also has a relationship with TDS (hence the aim of TDS 250), but please correct me if I'm mistaken?

      So aside from a critique of what I have done above I now ask for your learned advice on what I need to do next in preparation for shrimp? I feel I need to let introduce the fish first and get them comfortable, meanwhile it's reasonable to expect that the plants will have accelerated growth with the added carbon from the Flourish. Am I right to understand that Riffle Shrimp would like a jungle-ish environment?  I can envisage them sitting on the left hand side of the drift wood where the out flow is highest (the wavemaker also points at that spot and I'd probably set that on a timer to come on several times a day if it's needed) filter feeding.  Once I feel I have the right environment and care knowledge I hope I will be able to obtain some Riffle Shrimps with some help from SKF! Then perhaps I can truly move from being just curious through to being an enthusiast with some experience to share/help others.

      Thank you for reading, hope it's interesting and there aren't too many who look and go TL;DR.

      Please be gentle: Although I read A LOT of forums, this is the first time I'm posting in any forum in a very long time after finding the experience with keyboard warriors too taxing. I wouldn't normally have taken the time to ask for help in any forum; but, the enthusiasm for the idea of having these captivating shrimp in my planted community tank has surpassed my shyness and found me willing to put myself out there. 

      D
       

    • jayc
      By jayc
      Total Dissolved Solids or TDS for short is an area of water parameter we talk about very often, and is usually one of the first things we ask about when checking water parameters. 
      TDS and why is it important
      Preamble: Total Dissolved Solids or TDS for short is an area of water parameter we talk about very often, and is usually one of the first things we ask about when checking water parameters. This article will hopefully go into some depth for anyone who might still be new to the hobby, and likewise, might teach the veterans a thing or two that they might not have known about TDS. I have tried to keep the language appropriate to newcomers in mind, so please don’t expect a paper that reads like a scientific thesis. This article is also written from the perspective of a fish and a shrimp keeper, as I am, and draws from my experiences in these areas. You will see frequent mention of killis, Apistos, and shrimps.
      For the sake of simplicity, we will regard Electrical Conductivity (EC) to be of similar importance and similar definition to TDS.
      A definition of EC is the measure of the water's ability to "carry" an electrical current and indirectly, a measure of dissolved solids or ions in the water.
      Whereas a definition of “Total Dissolved Solids (TDS) is the total amount of mobile charged ions, including minerals, salts or metals dissolved in a given volume of water, expressed in units of mg per unit volume of water (mg/L), also referred to as parts per million (ppm). TDS is directly related to the purity of water and the quality of water purification systems and affects everything that consumes, lives in, or uses water, whether organic or inorganic, whether for better or for worse.” – (source: HM Digital)
      From the perspective of an aquarist, TDS can be defined as: a count of all the dissolved inorganic solids in the water. TDS gives an overview of mineral content in the water. It does not just necessarily provide information on hardness even though it does include the measurement of minerals like calcium and magnesium. Instead, TDS also includes measurements of all the other dissolved minerals in the body of water.  So you cannot use TDS to give you an indicator of hardness, that is, how much calcium carbonate is dissolved in the water.
      GH is at its heart a measure of divalent cations, namely Ca (calcium) and Mg (magnesium); and we know KH is a measure of carbonate concentration. Both GH and KH can influence hardness and TDS levels – ‘an aquarium high in GH & KH can have a high TDS’.
      However, a fish tank could have a high TDS reading but still have low GH and KH readings. In this situation the aquarium water might be high in one or more of the other dissolved minerals apart from Calcium and Magnesium. Therefore, TDS is a better reflection of the total mineral content than hardness measurements.
      In conclusion, Total Dissolved Solids consists of dissolved ionic elements, both cations and anions. Whereas, GH only measures two elements, Calcium and Magnesium. Let’s see what those other minerals, that a TDS meter/pen measures, might be.
      In chemical terms, if a neutral atom loses one or more electrons, it has a net positive charge and is known as a cation (source: Wikipedia). Cations are elements that can be found mainly on the left side of the periodic table (metals) and when it reacts, they usually become positive ions. Cations include ions such as calcium, magnesium, potassium, sodium, barium, iron, copper and zinc.
      If an atom gains electrons, it has a net negative charge and is known as an anion (source: Wikipedia). Anion elements can be found on the right side of the periodic table which reacts with metals to take electrons to form negative ions called anions. Anions include elements such as chloride, nitrate, iodine, bromide, fluoride, sulphide, chlorate, permanganate, phosphate and sulphate. Because of their electric charges, cations and anions attract each other and readily form ionic compounds, such as salts.
      All these ions and other inorganic ions are what is included in the measurement of TDS.

      Occasionally you will also hear of the term Total Suspended Solids (TSS).
       
      Therefore Total Suspended Solids refers to solids both suspended and dissolved in water and is directly related to conductance and turbidity (optical determination of water clarity – how cloudy/clear the water is).
      Dissolved solids (invisible) are therefore the substances that can flow through the filter media, too small to be trapped. And the substances in TSS include undissolved solids (visible), like bits of plant matter, or detritus and therefore includes substances that can be trapped by the filter media.
      High levels of TSS also have the following impacts: increased levels of TSS obstruct light and therefore reduce photosynthetic absorption in plants. High TSS can gradually decrease the amount of oxygen produced by these plants. Decaying plant matter uses up a lot more oxygen and subsequently reduces the amount of dissolved oxygen available in the water. Unless there is a significant amount of surface agitation (oxygenation). It’s always a good idea to have your filters, be it air driven or canister, break the surface of the water. It will reduce protein scum off the surface and maximise the oxygen exchange.
      While TSS is not specifically measured in a TDS meter, it’s good to know the difference between TDS and TSS, as well as its influence in the aquarium environment.
      Measuring Total Dissolved Solids
      TDS is the measuring of the amount of salts in a solution. For a lot of applications the amount of salt is indicative of the levels of other stuff in a solution. TDS/PPM meters sold for gardening and aquariums figure the amount of salt in Parts Per Million by measuring the Electrical Conductivity of the solution under test. So a PPM/TDS meter is an EC meter that converts the EC value into PPM values.
      EC is a measure of Electrical Conductivity from two probes 1cm apart. 1 EC is = 1 microsiemens, to convert from EC to siemens multiply by 1E-6. EC can be converted to PPM by multiplying by 500. PPM can be converted to EC by dividing by 500. To convert from siemens to Ohms is s=1/ohms, you can also go the other way and do ohm=1/s for siemens to ohms. Siemens is also known as Mhos, which comes from ohm written backward.
      The number 500 used to convert between PPM and EC is called the Conversion Factor. Different salts will have different conversion factors because some conduct better or worse than others. NaCl's is 500, this seems to be the most common standard used, and is what was used for the calibration solutions.
      Though there is a close relationship between TDS and Electrical Conductivity, they are not the same thing.  Total Dissolved Solids (TDS) and Electrical Conductivity (EC) are two separate parameters. TDS, in layman's terms, is the combined total of solids dissolved in water.  EC is the ability of something to conduct electricity (in this case, water's ability to conduct electricity).
      The measurement of dissolved solids is expressed in ppm of NaCl (sodium chloride) – TDS can be compared to Electrical Conductivity (EC) and the approximate conversion formula to get TDS(ppm) = 0.64 x EC mS/cm Conductivity measures electrolytes.
      Aquarists can now measure TDS levels via tests performed using a TDS meter (or TDS pen) in ppm at a relatively cheap price. Alternatively, you could use an EC pen and convert to TDS using the manufacturer’s conversion factor.

      Picture of a TDS meter or TDS pen
      TDS meters are usually calibrated using a solution of Sodium chloride NaCl.
      While Electrical Conductivity meters (EC) are usually calibrated with a solution of Potassium Chloride KCl.
      How do TDS pens work?
      Two electrodes with an applied AC voltage are placed in the solution. This creates a current dependent upon the conductive nature of the solution. The meter reads this current and displays in either conductivity (EC) or ppm (TDS).
      Electronic TDS meters essentially measures the conductivity of water, ie. how well the water conducts electricity. The higher the concentration of ions, results in the higher the conductivity of the water, and thus the higher the TDS level will be. And most of our softwater shrimp and fish don’t like high TDS.
      Many brands have meters that use a conversion ratio to change EC (conductivity in microsiemens) into TDS (ppm) along with a temperature compensation. It really does not matter too much, which one you choose to use, since they use the standard conversion for tap water of 0.5. For example, an EC measurement of 300 mS is converted to a TDS measurement of 150 ppm (TDS = EC x 0.5). In fact, most (if not all) TDS pens are actually EC meters that convert to TDS automatically saving the user from performing the mathematical step. There are TDS meters that perform a combination of functions (TDS/EC/pH/temp) which allow conversions to be adjusted between 0.47 and 0.85.
      There is one weakness with TDS measurements however, it does not measure which ions are responsible for the conductivity. So if you are testing tap water you don’t know if it’s the “good” ions like Calcium, Magnesium, Potassium or the undesirable ions like Iron, Copper, Nitrates, or any other number of dissolved solids that makes up the abundance of the reading. That is why many experienced aquarist will recommend using RO water and remineralising it so you know exactly what is in the water.
      A few general observations on TDS
      When water reaches a TDS count of 50ppm it becomes electrically conducting, that is, it’s able to conduct electricity at this level. The EPA Secondary Regulations advise a maximum contamination level (MCL) of 500mg/litre (500 parts per million (ppm)) for TDS. Numerous water supplies exceed this level. When TDS levels exceed 1000mg/L it is generally considered unfit for human consumption. A high level of TDS is an indicator of potential concerns, and warrants further investigation. Most often, high levels of TDS are caused by the presence of potassium, chlorides and sodium. These ions have little or no short-term effects, but toxic ions (lead arsenic, cadmium, nitrate and others) may also be dissolved in the water. Higher levels can be a likely cause for corrosion in plumbing. The visual quality of water is also impacted at levels higher than this.
      A general observation of high TDS water is that it is slightly alkaline in pH, that is it is lacking in hydrogen molecules. As with everything in nature that tries to reach equilibrium, high TDS or alkaline water will want to seek out hydrogen molecules to reach a neutral state. As such, slightly alkaline water often causes dehydration at a cellular level.
      Low TDS water on the other hand is loaded with positively charged hydrogen molecules and is therefore slightly acidic in pH. Low TDS water is therefore very hydrating at a cellular level.
      TDS and Low pH fish
      When we discuss soft water fish or shrimp that like low pH, what that generally means is that these fish are really low TDS fish. While it is not impossible for many of these low TDS fish to adapt to harder water, and higher pH (and often relatively higher TDS levels), the problem is, especially for South American soft water fish and Caridina shrimp, that calcium and magnesium rich water makes the egg’s membrane harder, and dramatically reduces the chances of hatching. And in more recent experiences, I’ve had greater success hatching killi fish eggs in lower TDS levels than at higher TDS levels. I have also observed that high TDS levels (due to high levels of chlorides, calcium and magnesium, fluoride, sulphides as found in tap water) is generally the cause. This is where it can be a common mistake for many people, including myself, to try all sorts of methods to lower pH and hardness but give no attention to TDS values. This is where Reverse Osmosis water can help with this predicament.
      I now use RO water to successfully lower calcium and magnesium levels, as well as TDS. This in turn has an impact on reducing pH as well as KH and GH. The fish seemed to be much more contented using this method of preparing clean, low TDS water. And as a reward, the fish promptly rewarded its keeper with eggs which hatched into fry (apistos, rams, other South American dwarfs and Killies).
      If you want to also match the tank water with the shrimp’s or fish's natural habitat parameters, keep the TDS levels low. What is low? Soft water is generally considered to be in the range of TDS 70 – 150ppm. My personal observations have shown me that high levels of dissolved mineral content in the water, are the main reasons for the failed breeding of many Killis, Shrimp (Caridina) and South American dwarf cichlids. This is attributed to inappropriate levels of   calcium and magnesium, and subsequently carbonates and bicarbonates. Placing the emphasis solely on pH alone does not rectify the issue since it can be said that pH is a symptom of the overall mineral content in the water, rather than the actual root cause. To make matters worse, pH down chemicals only adds to the TDS count, not decrease it. When breeding low pH fish, keep your emphasis on TDS instead of just pH.
      Some aquarists can often find themselves in a situation with tap water parameters that are no where near their shrimp’s or fish's preferred water conditions. My tap water in Sydney for example, is pH 7.8+, and GH & KH are also somewhat high for breeding caridina shrimp, Killi, or Apisto dwarf cichlids, which means we need to find a way of reducing it.
      We need to really stop thinking about just the permanent hardness of pH, KH and GH, or even temporary hardness for that matter. Concentrate on reducing calcium and magnesium hardness instead. Mixing the tap water with just plain RO at a ratio of 50:50 can be the simple solution to solving the problem of TDS, pH  and Hardness. We want to keep calcium and magnesium hardness in check since this can affect the fertilisation of the egg, as the egg’s membrane can get too hard to a point of making fertilisation extremely hard (pun) and nearly impossible.
      Sometimes I will mix RO water with peat treated water along with tap water to make water whose parameters closely approximates the needs of the Killi or South American dwarf cichlids. Tap water can be included in order to stabilise KH levels and thus keep the pH from fluctuating.
      Occasionally, I will add my own remineralising DIY mix to RO water to bring TDS up to a certain specific level on the occasions that adding tap water was undesirable, especially for my shrimp tanks.
      TDS readings for my Caridina shrimp are around 140-150, with a lower KH value of 0-1 and GH of around 5-7 have been proving to be successful for me. Neocaridina dwarf shrimps are capable of tolerating slightly higher TDS levels of up to 200. They might survive higher, but it would be unethical of me to advise you that it’s okay beyond 200.
      TDS readings for Killi and South American cichlids of between 70 and 110ppm with a  stable KH reading between 3 and 7. New soft water low pH fish and shrimp don’t merely survive in this treated water, but instead will thrive and multiply.
      You will find quite frequently that you will need to mix your water changes to a much lower TDS value that your target in order to maintain the tank’s overall TDS. This is normal, as the dissolved solids in the tank is continually increasing from various sources, like fish/shrimp waste, minerals introduced in food, water evaporation, or even decomposition of plants and organic matter. You might even get to a point where you need to change 80%+ of your tank water just to reset the TDS values. Don’t forget to re-acclimatise the shrimp back into this new water.
      TDS: Water Changes
      Many professional fish breeders practice the following method of TDS monitoring; it is one important parameter used to keep healthy fish.
      You could also use TDS levels as a means of deciding on the frequency of when it is time for a water change. A rise in TDS levels means it is time for some water to be changed, returning TDS levels to a lower count. Sharply increasing TDS levels can also indicate overfeeding, an over-stocked tank, or too much added minerals or fertilisers. But I would use caution in relying solely on TDS readings for water change indications. This is best reserved for those that are very familiar with their tank and understands what the TDS reading is showing.
      “pH Shock” - Moving fish from one tank to another
      For many years as a fish keeper, and now also as a shrimp keeper, I have understood changing the pH on fish or shrimp too quickly is a bad thing. It was only until I was researching the importance of TDS, a revelation has come to mind. TDS levels can represent different states of osmosis. Many aquarist have largely believed fish that succumb to what we call 'pH shock' is caused by the rapid variation in TDS levels. This places osmotic pressure stresses on the fish's osmoregulatory mechanisms which cannot become accustomed fast enough to the changing environment and hence the fish goes into a state of suffocation and in many cases can cause death. Fish have been shown to withstand fairly significant pH shifts when the TDS was low in both waters. It was not 'pH shock' as it is often alleged– that is, where the difference in pH is significant between one tank to another. But it was TDS shock! Maybe it’s because TDS meters are not as readily available, whereas, pH kits can be found in every fish shop. So the misguided recommendation was to test for pH, rather than TDS – who knows.
      One could declare that TDS measurements help to give an indication of the differences in osmotic levels between the water of one tank and another. In water with less total dissolved minerals compared to the amount of dissolved minerals in the tissue of the shrimp/fish, will cause the shrimp/fish to lose fluid from its cells via its gills (over hydration).  In high TDS water, it has the opposite effect, they become dehydrated.  Which causes the fish to have difficulty passing toxins out via its kidneys. This is a longer term impact to the fish, and you might not notice any impact immediately.
       IMHO, TDS meters are often the most under estimated tool that can be used to give a good indication of how successfully a shrimp or fish will adapt to the water in one tank to another.
       
       
      As a second reference, reading one of J. J. Scheel’s articles on dissolved solids also brought me to this realisation of ‘TDS shock’.
      Between 1959 and 1965 Col. Jorgen J. Scheel of Denmark sent out some letters about the science and systematics of killifish to any hobbyist that was interested. Scheel had what might be considered today some unorthodox opinions regarding water chemistry. He felt differences in salinity, or total dissolves solids mattered much more than pH (which could be safely ignored). Given this observation was made over many decades of working with killifish, it's a pervasive argument. Here are the relevant passages from Rivulins [killifish] of The Old World:
      Page 25
      Page 26
      TDS can also significantly impact the osmoregulation of the gills. Low TDS can cause the red blood cells to be depleted of water in fish that might not be acclimatised to the low TDS. While in high TDS, the red blood cells in the gills can be saturated with water causing the red blood cells to expand. Both will cause respiratory problems.
      As a result, always drip acclimatise new shrimp or fish to your tank prior to introducing them. Use your TDS meter/pen to match TDS values in your tank and the water of the new shrimp/fish. It usually takes doubling the amount of water from the tank to match the TDS in the bag of the new fish/shrimp.
      More caution needs to be placed on reducing TDS levels, compared to increasing TDS levels, as the former seems to be more lethal.
      Methods of lowering TDS
      There are several methods of lowering TDS, however, we will focus on only two methods as the other methods are unsustainable in the long term.
      These sources of low TDS water will need to be remineralised with Calcium & Magnesium mix in a ratio of 4:1. Remineralising raises the low TDS water back to a more suitable amount specific to the requirements of your fish or shrimp. Do not use low TDS water except to top up water loss due to evaporation.
      RO (Reverse Osmosis) Water
      Reverse osmosis works by forcing water under great pressure against a semi-permeable membrane that allows water molecules to pass through while excluding most contaminants. RO is the most thorough method of large-scale water purification available.
      There are a huge number and variety of RO systems around. Studies have revealed how the concept of osmotic pressure can assist in decontaminating water. With a fine particulate membrane and the act of forcing water through that membrane with sufficient pressure, will produce clean water on the other side of the membrane. The clean water is stored and the filtered waste is either thrown away or used for other non consumption uses like watering plants. RO systems can removed up to 98% of all ionic and organic impurities like pollutants, sediment, bacteria and contaminants. And as a result, TDS levels are drastically reduced.
      The RO filter membranes do not last forever unfortunately. As the TDS of the output water rises, it is generally an indication that the membranes need to be changed. The frequency of use and the level of TDS of your source (tap) water will determine the frequency of replacing the membrane.
      Deionisation (DI)
      In large scale DI systems water is passed between a positive electrode and a negative electrode. Ion selective membranes allow the positive ions to separate from the water toward the negative electrode and the negative ions toward the positive electrode. High purity de-ionized water results.
      Deionization is an on-demand process supplying purified water when needed. This is important because water at this extreme purity level degrades quickly. The nuclear grade deionization resin or polishing mixed bed resin removes almost all the inorganic contaminants in the water increasing the resistivity of the water to a maximum of 18.2 megohm-cm. However, deionization alone does not remove all types of contaminants like dissolved organic chemicals. Deionization filters are not physical filters with a pore size and cannot remove bacteria or particulates. 
      The water is usually passed through a reverse osmosis unit first to further remove non-ionic organic contaminants.
      RO vs DI:
      RO purity is relatively continuous while DI gets progressively worse as the resin nears its regeneration point. DI chemicals are expensive and therefore operating costs are higher than RO per litre of purified water. RO membranes are a physical barrier that remove bacteria, viruses, algae and suspended solids, while DI systems cannot remove these contaminants. DI uses two hazardous chemicals, hydrochloric acid (HCl) and caustic soda (NaOH) for regeneration of the resin beds. These chemicals needs special storage and disposal requirements. As you can see, DI water is also uneconomical for aquatic hobbyists.
      More portable DI systems nowadays use Ion exchange resins to exchange non desirable cations & anions; and replaces them with hydrogen and hydroxyl, respectively, forming pure water (H20), which is not an ion. One type of resin will remove positive IONS, while another type of resin will remove negative IONS.
      Cations Anions Removed by Cation Resins Removed by Anion Resins Calcium (Ca++) Chlorides (Cl-) Magnesium (Mg++) Sulfates (SO4=) Iron (Fe+++) Nitrates (NO3=) Manganese (Mn++) Carbonates (CO3=) Sodium (Na+) Silica (SiO2-) Hydrogen (H+) Hydroxyl (OH-) (Table care of Puretecwater)
      You might come across the term "Mixed bed" or "Dual Bed" system - this is a DI filter with both Cation and Anion resins.
      RO/DI portable systems
      Modern portable RO/DI systems solve both the individuall RO and DI shortcomings.
      These systems combine an RO membrane with DI resins to produce near 0 TDS water. 
      The RO removes the organic waste like bacteria, viruses and algae that the DI cannot. 
      While the DI removes the minerals like Calcium, Magnesium, Chlorides, Sulfates, etc that the RO membrane misses.
      By combining the two, we get the best of both worlds. 
      Most Reverse Osmosis filters you can buy today, like those sold by FSA, https://www.filtersystemsaustralia.com.au/store/index.php/reverse-osmosis-water-filter/aquarium-systems.html are in fact RO/DI systems.
      Rain water
      What can be better than water from mother nature?
      After all, our river systems are made up of water that falls as rain. So this has to be the best source of water, is it not? In most cases it is. However, many of us live in polluted cities, and we collect and store rain water in manmade receptacles that might add to the contamination of rain water. So some form of caution is necessary.
      If you are confident that the water is collected off relatively clean, rust free roofs and stored in plastic drums, then rain water is a perfect free source of low TDS water.
      Rain can be sporadic and unpredictable in some countries, so an RO system as a backup is always a good idea.
      There are other methods of lowering TDS, as mentioned in the next section, but I will not focus on them as it’s not really a preference. I mention it here only as a last resort.
      Peat
      All over the internet and on forums, many can attest to using peat in helping to lower pH, GH, KH, and TDS. This greatly depends on your own water conditions and how much the peat treated water affects TDS. If your tap water is particularly hard, you might need more peat to lower the mentioned parameters compared with someone else’s tap water. It is not uncommon to mix the peat with RO water (and/or maybe some tapwater) in an attempt for one to achieve a stable chemistry that agrees with the shrimp/fish you are keeping.
      The addition of tannins, phenols, humic acids along with the combination of peat treated water allows you to create water conditions close to your livestock’s natural environment. Peat water (even small additions) is positively regarded by many aquarists, as essential for low TDS fish, especially dwarfs such as Discus, Tetras, Corys, Angels, Rams and Apistos.
      The problem with recommending peat is finding it in Australia is difficult. Especially peat that does not also have fertilisers included. Then there is the extra effort in making peat water, and the need to make it several days ahead of use and store it in containers. The colour that results from the added tannins from peat is also not to everyone’s liking.
      Distillation
      Distillation involves boiling the water to produce water vapour. The water vapour then rises to a cooled surface where it can condense back into a liquid and be collected. Because the dissolved solids are not normally vaporized, they remain in the boiling solution. However, some impurities with the same boiling point of that of water can be transferred to the collection water, and for this reason, Reverse Osmosis can produce purer water. The absolute advantage of the distilled water is the complete absence of harmful substances like bacteria, viruses or algae.
      Considerable amount of cost is required to produce and maintain the thermal requirements for a distillation process. As a result this method is uneconomical for aquatic hobbyists.
      A quick word on Water softeners
      Water softeners do not necessarily produce water that is suitable for Softwater fish and shrimps. Water softeners work by removing the temporary hardness (such as carbonates) by replacing it with permanent hardness such as chlorides. This increased level of chloride is unnatural to any environment where the fish or shrimp may be found. While the water is now softer, from the fish’s or shrimp’s point of view the water is still chock full of dissolved minerals (chlorides or sodium) and TDS will still be high. The cautious approach is to avoid using water softeners altogether if you are trying to reduce the hardness of your aquarium water.
      Increasing TDS
      We have discussed reducing TDS, but how do you increase TDS the right way? 
      Increasing TDS is one of the easiest things to do. In fact, you could do nothing to the tank and TDS will increase over time. You could add salt or sugar to the water and TDS would increase. However, that increase is due to waste from fish, food, etc. and not always a good thing. And neither is adding salt or sugar - Don't do it !
      The main minerals/chemicals that you want to use to increase TDS in an Aquarium is Calcium & Magnesium at 4:1 ratio and to a smaller extent other minerals like Potassium and trace elements.
      There are several off the shelf products that will remineralise low TDS water, increasing it to a suitable level. If you'd like to Do It Yourself, I even have a recipe here ...
      Summary
      One of the most vital aspects of keeping soft water shrimp or fish is the significance of TDS - Total Dissolved Solids.
      The majority of aquarists will put their attention on the pH only for soft water fish or shrimp but completely forget about TDS. A simple $20 piece of equipment will be able to rectify that.
      The various years of observation has lead to a realisation that low pH actually means low TDS be it for fish or shrimp. Both water parameter readings need to go hand in hand. We cannot ignore one or the other when you are trying to replicate the aquarium’s environment. The effects of shock can be offset by slowing mixing the water. And this can be important between your own tanks too, as TDS is unique to each tank.
      A TDS meter is an absolutely essential tool in an aquarist’s cabinet.
      For the shrimp keeper, monitoring TDS is of vital importance. In an environment where the shrimp are constantly using up Calcium to grow their shells, and dissolved solids are constantly changing due to food, nitrogenous waste being produced, and even evaporation of water can cause fluctuations in the level of dissolved solids in the tank water. This constant fluctuation can cause stress in the shrimp. This stress can lead to a reduction in their immune systems, and sometimes eventuate in death.
      Close monitoring of TDS is required to ensure the shrimps environment is stable. TDS should never fluctuate wildly. Aim for a constant TDS reading in the tank. In doing so, you might find that you will need a lower TDS reading for water changes in order to maintain a target. For example, if your target is 150ppm TDS, then you might need to aim for 110ppm TDS in your change water. Aiming for 150ppm TDS in the change water will result in TDS rising overtime as dissolved solids gets concentrated in the tank. Over time, TDS continually and constantly rises each day. They enter the aquarium via fish food, water conditioners, plant fertilizers, medications, and any substance that treats water in some way. Water evaporation will also cause the dissolved solids already in the tank to be more concentrated.
      TDS readings can also be used as an indication of when it is time for a water change. If you see TDS rising to the upper limits of your target TDS, then it’s time for a 5-10% water change. If the small 5-10% water change is still not enough to reduce TDS to your ideal target, another water change might be necessary two or three days later. Don’t rush in reducing TDS. Slow is always advisable.
      TDS readings also come in handy when acclimatising shrimp and fish. We all know how to drip acclimatise shrimps or fish. This process reduces the impact of large fluctuations in differing water parameters. I often hear of people saying “I drip acclimatised my shrimp/fish for 3 hours” or “6 hours”. But how do you know that 3 hours or 6 hours or even 12 hours was enough for that matter?
      Instead, rather than acclimatising new shrimp or fish by amount of time, we should be monitoring the TDS. Once the TDS reaches the same reading between the tank and the water the new shrimps/fish came in, then you can be sure that GH, KH and pH will all be matching as well. This can take a varying amount of time depending on how fast you add the tank water and how much water is already in the bag containing the new shrimp/fish. Once TDS is matching, then place the bag or container into the tank for a few more minutes to ensure temperature is the same before catching and releasing your new pets into the tank. It can take 6 hours or it can take 16. It doesn’t matter, but I have never lost a fish or shrimp using this TDS monitoring method of acclimatising.
       
      JayC
      SKF Aquatics
      http://skfaquatics.com/
       

      View full article
    • jayc
      By jayc
      TDS and why is it important
      Preamble: Total Dissolved Solids or TDS for short is an area of water parameter we talk about very often, and is usually one of the first things we ask about when checking water parameters. This article will hopefully go into some depth for anyone who might still be new to the hobby, and likewise, might teach the veterans a thing or two that they might not have known about TDS. I have tried to keep the language appropriate to newcomers in mind, so please don’t expect a paper that reads like a scientific thesis. This article is also written from the perspective of a fish and a shrimp keeper, as I am, and draws from my experiences in these areas. You will see frequent mention of killis, Apistos, and shrimps.
      For the sake of simplicity, we will regard Electrical Conductivity (EC) to be of similar importance and similar definition to TDS.
      A definition of EC is the measure of the water's ability to "carry" an electrical current and indirectly, a measure of dissolved solids or ions in the water.
      Whereas a definition of “Total Dissolved Solids (TDS) is the total amount of mobile charged ions, including minerals, salts or metals dissolved in a given volume of water, expressed in units of mg per unit volume of water (mg/L), also referred to as parts per million (ppm). TDS is directly related to the purity of water and the quality of water purification systems and affects everything that consumes, lives in, or uses water, whether organic or inorganic, whether for better or for worse.” – (source: HM Digital)
      From the perspective of an aquarist, TDS can be defined as: a count of all the dissolved inorganic solids in the water. TDS gives an overview of mineral content in the water. It does not just necessarily provide information on hardness even though it does include the measurement of minerals like calcium and magnesium. Instead, TDS also includes measurements of all the other dissolved minerals in the body of water.  So you cannot use TDS to give you an indicator of hardness, that is, how much calcium carbonate is dissolved in the water.
      GH is at its heart a measure of divalent cations, namely Ca (calcium) and Mg (magnesium); and we know KH is a measure of carbonate concentration. Both GH and KH can influence hardness and TDS levels – ‘an aquarium high in GH & KH can have a high TDS’.
      However, a fish tank could have a high TDS reading but still have low GH and KH readings. In this situation the aquarium water might be high in one or more of the other dissolved minerals apart from Calcium and Magnesium. Therefore, TDS is a better reflection of the total mineral content than hardness measurements.
      In conclusion, Total Dissolved Solids consists of dissolved ionic elements, both cations and anions. Whereas, GH only measures two elements, Calcium and Magnesium. Let’s see what those other minerals, that a TDS meter/pen measures, might be.
      In chemical terms, if a neutral atom loses one or more electrons, it has a net positive charge and is known as a cation (source: Wikipedia). Cations are elements that can be found mainly on the left side of the periodic table (metals) and when it reacts, they usually become positive ions. Cations include ions such as calcium, magnesium, potassium, sodium, barium, iron, copper and zinc.
      If an atom gains electrons, it has a net negative charge and is known as an anion (source: Wikipedia). Anion elements can be found on the right side of the periodic table which reacts with metals to take electrons to form negative ions called anions. Anions include elements such as chloride, nitrate, iodine, bromide, fluoride, sulphide, chlorate, permanganate, phosphate and sulphate. Because of their electric charges, cations and anions attract each other and readily form ionic compounds, such as salts.
      All these ions and other inorganic ions are what is included in the measurement of TDS.

      Occasionally you will also hear of the term Total Suspended Solids (TSS).
       
      Therefore Total Suspended Solids refers to solids both suspended and dissolved in water and is directly related to conductance and turbidity (optical determination of water clarity – how cloudy/clear the water is).
      Dissolved solids (invisible) are therefore the substances that can flow through the filter media, too small to be trapped. And the substances in TSS include undissolved solids (visible), like bits of plant matter, or detritus and therefore includes substances that can be trapped by the filter media.
      High levels of TSS also have the following impacts: increased levels of TSS obstruct light and therefore reduce photosynthetic absorption in plants. High TSS can gradually decrease the amount of oxygen produced by these plants. Decaying plant matter uses up a lot more oxygen and subsequently reduces the amount of dissolved oxygen available in the water. Unless there is a significant amount of surface agitation (oxygenation). It’s always a good idea to have your filters, be it air driven or canister, break the surface of the water. It will reduce protein scum off the surface and maximise the oxygen exchange.
      While TSS is not specifically measured in a TDS meter, it’s good to know the difference between TDS and TSS, as well as its influence in the aquarium environment.
      Measuring Total Dissolved Solids
      TDS is the measuring of the amount of salts in a solution. For a lot of applications the amount of salt is indicative of the levels of other stuff in a solution. TDS/PPM meters sold for gardening and aquariums figure the amount of salt in Parts Per Million by measuring the Electrical Conductivity of the solution under test. So a PPM/TDS meter is an EC meter that converts the EC value into PPM values.
      EC is a measure of Electrical Conductivity from two probes 1cm apart. 1 EC is = 1 microsiemens, to convert from EC to siemens multiply by 1E-6. EC can be converted to PPM by multiplying by 500. PPM can be converted to EC by dividing by 500. To convert from siemens to Ohms is s=1/ohms, you can also go the other way and do ohm=1/s for siemens to ohms. Siemens is also known as Mhos, which comes from ohm written backward.
      The number 500 used to convert between PPM and EC is called the Conversion Factor. Different salts will have different conversion factors because some conduct better or worse than others. NaCl's is 500, this seems to be the most common standard used, and is what was used for the calibration solutions.
      Though there is a close relationship between TDS and Electrical Conductivity, they are not the same thing.  Total Dissolved Solids (TDS) and Electrical Conductivity (EC) are two separate parameters. TDS, in layman's terms, is the combined total of solids dissolved in water.  EC is the ability of something to conduct electricity (in this case, water's ability to conduct electricity).
      The measurement of dissolved solids is expressed in ppm of NaCl (sodium chloride) – TDS can be compared to Electrical Conductivity (EC) and the approximate conversion formula to get TDS(ppm) = 0.64 x EC mS/cm Conductivity measures electrolytes.
      Aquarists can now measure TDS levels via tests performed using a TDS meter (or TDS pen) in ppm at a relatively cheap price. Alternatively, you could use an EC pen and convert to TDS using the manufacturer’s conversion factor.

      Picture of a TDS meter or TDS pen
      TDS meters are usually calibrated using a solution of Sodium chloride NaCl.
      While Electrical Conductivity meters (EC) are usually calibrated with a solution of Potassium Chloride KCl.
      How do TDS pens work?
      Two electrodes with an applied AC voltage are placed in the solution. This creates a current dependent upon the conductive nature of the solution. The meter reads this current and displays in either conductivity (EC) or ppm (TDS).
      Electronic TDS meters essentially measures the conductivity of water, ie. how well the water conducts electricity. The higher the concentration of ions, results in the higher the conductivity of the water, and thus the higher the TDS level will be. And most of our softwater shrimp and fish don’t like high TDS.
      Many brands have meters that use a conversion ratio to change EC (conductivity in microsiemens) into TDS (ppm) along with a temperature compensation. It really does not matter too much, which one you choose to use, since they use the standard conversion for tap water of 0.5. For example, an EC measurement of 300 mS is converted to a TDS measurement of 150 ppm (TDS = EC x 0.5). In fact, most (if not all) TDS pens are actually EC meters that convert to TDS automatically saving the user from performing the mathematical step. There are TDS meters that perform a combination of functions (TDS/EC/pH/temp) which allow conversions to be adjusted between 0.47 and 0.85.
      There is one weakness with TDS measurements however, it does not measure which ions are responsible for the conductivity. So if you are testing tap water you don’t know if it’s the “good” ions like Calcium, Magnesium, Potassium or the undesirable ions like Iron, Copper, Nitrates, or any other number of dissolved solids that makes up the abundance of the reading. That is why many experienced aquarist will recommend using RO water and remineralising it so you know exactly what is in the water.
      A few general observations on TDS
      When water reaches a TDS count of 50ppm it becomes electrically conducting, that is, it’s able to conduct electricity at this level. The EPA Secondary Regulations advise a maximum contamination level (MCL) of 500mg/litre (500 parts per million (ppm)) for TDS. Numerous water supplies exceed this level. When TDS levels exceed 1000mg/L it is generally considered unfit for human consumption. A high level of TDS is an indicator of potential concerns, and warrants further investigation. Most often, high levels of TDS are caused by the presence of potassium, chlorides and sodium. These ions have little or no short-term effects, but toxic ions (lead arsenic, cadmium, nitrate and others) may also be dissolved in the water. Higher levels can be a likely cause for corrosion in plumbing. The visual quality of water is also impacted at levels higher than this.
      A general observation of high TDS water is that it is slightly alkaline in pH, that is it is lacking in hydrogen molecules. As with everything in nature that tries to reach equilibrium, high TDS or alkaline water will want to seek out hydrogen molecules to reach a neutral state. As such, slightly alkaline water often causes dehydration at a cellular level.
      Low TDS water on the other hand is loaded with positively charged hydrogen molecules and is therefore slightly acidic in pH. Low TDS water is therefore very hydrating at a cellular level.
      TDS and Low pH fish
      When we discuss soft water fish or shrimp that like low pH, what that generally means is that these fish are really low TDS fish. While it is not impossible for many of these low TDS fish to adapt to harder water, and higher pH (and often relatively higher TDS levels), the problem is, especially for South American soft water fish and Caridina shrimp, that calcium and magnesium rich water makes the egg’s membrane harder, and dramatically reduces the chances of hatching. And in more recent experiences, I’ve had greater success hatching killi fish eggs in lower TDS levels than at higher TDS levels. I have also observed that high TDS levels (due to high levels of chlorides, calcium and magnesium, fluoride, sulphides as found in tap water) is generally the cause. This is where it can be a common mistake for many people, including myself, to try all sorts of methods to lower pH and hardness but give no attention to TDS values. This is where Reverse Osmosis water can help with this predicament.
      I now use RO water to successfully lower calcium and magnesium levels, as well as TDS. This in turn has an impact on reducing pH as well as KH and GH. The fish seemed to be much more contented using this method of preparing clean, low TDS water. And as a reward, the fish promptly rewarded its keeper with eggs which hatched into fry (apistos, rams, other South American dwarfs and Killies).
      If you want to also match the tank water with the shrimp’s or fish's natural habitat parameters, keep the TDS levels low. What is low? Soft water is generally considered to be in the range of TDS 70 – 150ppm. My personal observations have shown me that high levels of dissolved mineral content in the water, are the main reasons for the failed breeding of many Killis, Shrimp (Caridina) and South American dwarf cichlids. This is attributed to inappropriate levels of   calcium and magnesium, and subsequently carbonates and bicarbonates. Placing the emphasis solely on pH alone does not rectify the issue since it can be said that pH is a symptom of the overall mineral content in the water, rather than the actual root cause. To make matters worse, pH down chemicals only adds to the TDS count, not decrease it. When breeding low pH fish, keep your emphasis on TDS instead of just pH.
      Some aquarists can often find themselves in a situation with tap water parameters that are no where near their shrimp’s or fish's preferred water conditions. My tap water in Sydney for example, is pH 7.8+, and GH & KH are also somewhat high for breeding caridina shrimp, Killi, or Apisto dwarf cichlids, which means we need to find a way of reducing it.
      We need to really stop thinking about just the permanent hardness of pH, KH and GH, or even temporary hardness for that matter. Concentrate on reducing calcium and magnesium hardness instead. Mixing the tap water with just plain RO at a ratio of 50:50 can be the simple solution to solving the problem of TDS, pH  and Hardness. We want to keep calcium and magnesium hardness in check since this can affect the fertilisation of the egg, as the egg’s membrane can get too hard to a point of making fertilisation extremely hard (pun) and nearly impossible.
      Sometimes I will mix RO water with peat treated water along with tap water to make water whose parameters closely approximates the needs of the Killi or South American dwarf cichlids. Tap water can be included in order to stabilise KH levels and thus keep the pH from fluctuating.
      Occasionally, I will add my own remineralising DIY mix to RO water to bring TDS up to a certain specific level on the occasions that adding tap water was undesirable, especially for my shrimp tanks.
      TDS readings for my Caridina shrimp are around 140-150, with a lower KH value of 0-1 and GH of around 5-7 have been proving to be successful for me. Neocaridina dwarf shrimps are capable of tolerating slightly higher TDS levels of up to 200. They might survive higher, but it would be unethical of me to advise you that it’s okay beyond 200.
      TDS readings for Killi and South American cichlids of between 70 and 110ppm with a  stable KH reading between 3 and 7. New soft water low pH fish and shrimp don’t merely survive in this treated water, but instead will thrive and multiply.
      You will find quite frequently that you will need to mix your water changes to a much lower TDS value that your target in order to maintain the tank’s overall TDS. This is normal, as the dissolved solids in the tank is continually increasing from various sources, like fish/shrimp waste, minerals introduced in food, water evaporation, or even decomposition of plants and organic matter. You might even get to a point where you need to change 80%+ of your tank water just to reset the TDS values. Don’t forget to re-acclimatise the shrimp back into this new water.
      TDS: Water Changes
      Many professional fish breeders practice the following method of TDS monitoring; it is one important parameter used to keep healthy fish.
      You could also use TDS levels as a means of deciding on the frequency of when it is time for a water change. A rise in TDS levels means it is time for some water to be changed, returning TDS levels to a lower count. Sharply increasing TDS levels can also indicate overfeeding, an over-stocked tank, or too much added minerals or fertilisers. But I would use caution in relying solely on TDS readings for water change indications. This is best reserved for those that are very familiar with their tank and understands what the TDS reading is showing.
      “pH Shock” - Moving fish from one tank to another
      For many years as a fish keeper, and now also as a shrimp keeper, I have understood changing the pH on fish or shrimp too quickly is a bad thing. It was only until I was researching the importance of TDS, a revelation has come to mind. TDS levels can represent different states of osmosis. Many aquarist have largely believed fish that succumb to what we call 'pH shock' is caused by the rapid variation in TDS levels. This places osmotic pressure stresses on the fish's osmoregulatory mechanisms which cannot become accustomed fast enough to the changing environment and hence the fish goes into a state of suffocation and in many cases can cause death. Fish have been shown to withstand fairly significant pH shifts when the TDS was low in both waters. It was not 'pH shock' as it is often alleged– that is, where the difference in pH is significant between one tank to another. But it was TDS shock! Maybe it’s because TDS meters are not as readily available, whereas, pH kits can be found in every fish shop. So the misguided recommendation was to test for pH, rather than TDS – who knows.
      One could declare that TDS measurements help to give an indication of the differences in osmotic levels between the water of one tank and another. In water with less total dissolved minerals compared to the amount of dissolved minerals in the tissue of the shrimp/fish, will cause the shrimp/fish to lose fluid from its cells via its gills (over hydration).  In high TDS water, it has the opposite effect, they become dehydrated.  Which causes the fish to have difficulty passing toxins out via its kidneys. This is a longer term impact to the fish, and you might not notice any impact immediately.
       IMHO, TDS meters are often the most under estimated tool that can be used to give a good indication of how successfully a shrimp or fish will adapt to the water in one tank to another.
       
       
      As a second reference, reading one of J. J. Scheel’s articles on dissolved solids also brought me to this realisation of ‘TDS shock’.
      Between 1959 and 1965 Col. Jorgen J. Scheel of Denmark sent out some letters about the science and systematics of killifish to any hobbyist that was interested. Scheel had what might be considered today some unorthodox opinions regarding water chemistry. He felt differences in salinity, or total dissolves solids mattered much more than pH (which could be safely ignored). Given this observation was made over many decades of working with killifish, it's a pervasive argument. Here are the relevant passages from Rivulins [killifish] of The Old World:
      Page 25
      Page 26
      TDS can also significantly impact the osmoregulation of the gills. Low TDS can cause the red blood cells to be depleted of water in fish that might not be acclimatised to the low TDS. While in high TDS, the red blood cells in the gills can be saturated with water causing the red blood cells to expand. Both will cause respiratory problems.
      As a result, always drip acclimatise new shrimp or fish to your tank prior to introducing them. Use your TDS meter/pen to match TDS values in your tank and the water of the new shrimp/fish. It usually takes doubling the amount of water from the tank to match the TDS in the bag of the new fish/shrimp.
      More caution needs to be placed on reducing TDS levels, compared to increasing TDS levels, as the former seems to be more lethal.
      Methods of lowering TDS
      There are several methods of lowering TDS, however, we will focus on only two methods as the other methods are unsustainable in the long term.
      These sources of low TDS water will need to be remineralised with Calcium & Magnesium mix in a ratio of 4:1. Remineralising raises the low TDS water back to a more suitable amount specific to the requirements of your fish or shrimp. Do not use low TDS water except to top up water loss due to evaporation.
      RO (Reverse Osmosis) Water
      Reverse osmosis works by forcing water under great pressure against a semi-permeable membrane that allows water molecules to pass through while excluding most contaminants. RO is the most thorough method of large-scale water purification available.
      There are a huge number and variety of RO systems around. Studies have revealed how the concept of osmotic pressure can assist in decontaminating water. With a fine particulate membrane and the act of forcing water through that membrane with sufficient pressure, will produce clean water on the other side of the membrane. The clean water is stored and the filtered waste is either thrown away or used for other non consumption uses like watering plants. RO systems can removed up to 98% of all ionic and organic impurities like pollutants, sediment, bacteria and contaminants. And as a result, TDS levels are drastically reduced.
      The RO filter membranes do not last forever unfortunately. As the TDS of the output water rises, it is generally an indication that the membranes need to be changed. The frequency of use and the level of TDS of your source (tap) water will determine the frequency of replacing the membrane.
      Deionisation (DI)
      In large scale DI systems water is passed between a positive electrode and a negative electrode. Ion selective membranes allow the positive ions to separate from the water toward the negative electrode and the negative ions toward the positive electrode. High purity de-ionized water results.
      Deionization is an on-demand process supplying purified water when needed. This is important because water at this extreme purity level degrades quickly. The nuclear grade deionization resin or polishing mixed bed resin removes almost all the inorganic contaminants in the water increasing the resistivity of the water to a maximum of 18.2 megohm-cm. However, deionization alone does not remove all types of contaminants like dissolved organic chemicals. Deionization filters are not physical filters with a pore size and cannot remove bacteria or particulates. 
      The water is usually passed through a reverse osmosis unit first to further remove non-ionic organic contaminants.
      RO vs DI:
      RO purity is relatively continuous while DI gets progressively worse as the resin nears its regeneration point. DI chemicals are expensive and therefore operating costs are higher than RO per litre of purified water. RO membranes are a physical barrier that remove bacteria, viruses, algae and suspended solids, while DI systems cannot remove these contaminants. DI uses two hazardous chemicals, hydrochloric acid (HCl) and caustic soda (NaOH) for regeneration of the resin beds. These chemicals needs special storage and disposal requirements. As you can see, DI water is also uneconomical for aquatic hobbyists.
      More portable DI systems nowadays use Ion exchange resins to exchange non desirable cations & anions; and replaces them with hydrogen and hydroxyl, respectively, forming pure water (H20), which is not an ion. One type of resin will remove positive IONS, while another type of resin will remove negative IONS.
      Cations Anions Removed by Cation Resins Removed by Anion Resins Calcium (Ca++) Chlorides (Cl-) Magnesium (Mg++) Sulfates (SO4=) Iron (Fe+++) Nitrates (NO3=) Manganese (Mn++) Carbonates (CO3=) Sodium (Na+) Silica (SiO2-) Hydrogen (H+) Hydroxyl (OH-) (Table care of Puretecwater)
      You might come across the term "Mixed bed" or "Dual Bed" system - this is a DI filter with both Cation and Anion resins.
      RO/DI portable systems
      Modern portable RO/DI systems solve both the individuall RO and DI shortcomings.
      These systems combine an RO membrane with DI resins to produce near 0 TDS water. 
      The RO removes the organic waste like bacteria, viruses and algae that the DI cannot. 
      While the DI removes the minerals like Calcium, Magnesium, Chlorides, Sulfates, etc that the RO membrane misses.
      By combining the two, we get the best of both worlds. 
      Most Reverse Osmosis filters you can buy today, like those sold by FSA, https://www.filtersystemsaustralia.com.au/store/index.php/reverse-osmosis-water-filter/aquarium-systems.html are in fact RO/DI systems.
      Rain water
      What can be better than water from mother nature?
      After all, our river systems are made up of water that falls as rain. So this has to be the best source of water, is it not? In most cases it is. However, many of us live in polluted cities, and we collect and store rain water in manmade receptacles that might add to the contamination of rain water. So some form of caution is necessary.
      If you are confident that the water is collected off relatively clean, rust free roofs and stored in plastic drums, then rain water is a perfect free source of low TDS water.
      Rain can be sporadic and unpredictable in some countries, so an RO system as a backup is always a good idea.
      There are other methods of lowering TDS, as mentioned in the next section, but I will not focus on them as it’s not really a preference. I mention it here only as a last resort.
      Peat
      All over the internet and on forums, many can attest to using peat in helping to lower pH, GH, KH, and TDS. This greatly depends on your own water conditions and how much the peat treated water affects TDS. If your tap water is particularly hard, you might need more peat to lower the mentioned parameters compared with someone else’s tap water. It is not uncommon to mix the peat with RO water (and/or maybe some tapwater) in an attempt for one to achieve a stable chemistry that agrees with the shrimp/fish you are keeping.
      The addition of tannins, phenols, humic acids along with the combination of peat treated water allows you to create water conditions close to your livestock’s natural environment. Peat water (even small additions) is positively regarded by many aquarists, as essential for low TDS fish, especially dwarfs such as Discus, Tetras, Corys, Angels, Rams and Apistos.
      The problem with recommending peat is finding it in Australia is difficult. Especially peat that does not also have fertilisers included. Then there is the extra effort in making peat water, and the need to make it several days ahead of use and store it in containers. The colour that results from the added tannins from peat is also not to everyone’s liking.
      Distillation
      Distillation involves boiling the water to produce water vapour. The water vapour then rises to a cooled surface where it can condense back into a liquid and be collected. Because the dissolved solids are not normally vaporized, they remain in the boiling solution. However, some impurities with the same boiling point of that of water can be transferred to the collection water, and for this reason, Reverse Osmosis can produce purer water. The absolute advantage of the distilled water is the complete absence of harmful substances like bacteria, viruses or algae.
      Considerable amount of cost is required to produce and maintain the thermal requirements for a distillation process. As a result this method is uneconomical for aquatic hobbyists.
      A quick word on Water softeners
      Water softeners do not necessarily produce water that is suitable for Softwater fish and shrimps. Water softeners work by removing the temporary hardness (such as carbonates) by replacing it with permanent hardness such as chlorides. This increased level of chloride is unnatural to any environment where the fish or shrimp may be found. While the water is now softer, from the fish’s or shrimp’s point of view the water is still chock full of dissolved minerals (chlorides or sodium) and TDS will still be high. The cautious approach is to avoid using water softeners altogether if you are trying to reduce the hardness of your aquarium water.
      Increasing TDS
      We have discussed reducing TDS, but how do you increase TDS the right way? 
      Increasing TDS is one of the easiest things to do. In fact, you could do nothing to the tank and TDS will increase over time. You could add salt or sugar to the water and TDS would increase. However, that increase is due to waste from fish, food, etc. and not always a good thing. And neither is adding salt or sugar - Don't do it !
      The main minerals/chemicals that you want to use to increase TDS in an Aquarium is Calcium & Magnesium at 4:1 ratio and to a smaller extent other minerals like Potassium and trace elements.
      There are several off the shelf products that will remineralise low TDS water, increasing it to a suitable level. If you'd like to Do It Yourself, I even have a recipe here ...
      Summary
      One of the most vital aspects of keeping soft water shrimp or fish is the significance of TDS - Total Dissolved Solids.
      The majority of aquarists will put their attention on the pH only for soft water fish or shrimp but completely forget about TDS. A simple $20 piece of equipment will be able to rectify that.
      The various years of observation has lead to a realisation that low pH actually means low TDS be it for fish or shrimp. Both water parameter readings need to go hand in hand. We cannot ignore one or the other when you are trying to replicate the aquarium’s environment. The effects of shock can be offset by slowing mixing the water. And this can be important between your own tanks too, as TDS is unique to each tank.
      A TDS meter is an absolutely essential tool in an aquarist’s cabinet.
      For the shrimp keeper, monitoring TDS is of vital importance. In an environment where the shrimp are constantly using up Calcium to grow their shells, and dissolved solids are constantly changing due to food, nitrogenous waste being produced, and even evaporation of water can cause fluctuations in the level of dissolved solids in the tank water. This constant fluctuation can cause stress in the shrimp. This stress can lead to a reduction in their immune systems, and sometimes eventuate in death.
      Close monitoring of TDS is required to ensure the shrimps environment is stable. TDS should never fluctuate wildly. Aim for a constant TDS reading in the tank. In doing so, you might find that you will need a lower TDS reading for water changes in order to maintain a target. For example, if your target is 150ppm TDS, then you might need to aim for 110ppm TDS in your change water. Aiming for 150ppm TDS in the change water will result in TDS rising overtime as dissolved solids gets concentrated in the tank. Over time, TDS continually and constantly rises each day. They enter the aquarium via fish food, water conditioners, plant fertilizers, medications, and any substance that treats water in some way. Water evaporation will also cause the dissolved solids already in the tank to be more concentrated.
      TDS readings can also be used as an indication of when it is time for a water change. If you see TDS rising to the upper limits of your target TDS, then it’s time for a 5-10% water change. If the small 5-10% water change is still not enough to reduce TDS to your ideal target, another water change might be necessary two or three days later. Don’t rush in reducing TDS. Slow is always advisable.
      TDS readings also come in handy when acclimatising shrimp and fish. We all know how to drip acclimatise shrimps or fish. This process reduces the impact of large fluctuations in differing water parameters. I often hear of people saying “I drip acclimatised my shrimp/fish for 3 hours” or “6 hours”. But how do you know that 3 hours or 6 hours or even 12 hours was enough for that matter?
      Instead, rather than acclimatising new shrimp or fish by amount of time, we should be monitoring the TDS. Once the TDS reaches the same reading between the tank and the water the new shrimps/fish came in, then you can be sure that GH, KH and pH will all be matching as well. This can take a varying amount of time depending on how fast you add the tank water and how much water is already in the bag containing the new shrimp/fish. Once TDS is matching, then place the bag or container into the tank for a few more minutes to ensure temperature is the same before catching and releasing your new pets into the tank. It can take 6 hours or it can take 16. It doesn’t matter, but I have never lost a fish or shrimp using this TDS monitoring method of acclimatising.
       
      JayC
      SKF Aquatics
      http://skfaquatics.com/
       


  • Register today, ask questions and share your shrimp and fish tank experiences with us!

    Join Our Community!

  • Posts

    • Cesar
      Congrats @Sheldon13, keep us updated on their progress...
    • Sheldon13
      I LOVE the Velvet blue you have.  Beautiful specimen!
    • Sheldon13
      It's my first time guys!  I got these as my first shrimp, they were berried within 2 days and I had to squeal this morning when I woke up to babies!  So far I count 13.  I had 2 berried females so I know there's more...  They are orange cherries 😄
    • Baccus
      As helpful as pictures are I was wondering if there is a written description of the different colour varieties, much like what would be for say a show dog where desired criteria must be met in order for it to be grand champion worthy or pet quality. I ask because I am seeing many people selling "blue dreams" for example but there seems to be a great deal of difference with regards to darkness of the blue or clarity of the blue. And many of the sellers are either correctly claiming the shrimp are high grade or wrongly duping ( Not all but some and some could be doing it by accident too from not having a definitive accurate description to go by) new buyers who go on to breed said shrimp and sell on the offspring guessing they are high grade because they purchased high grade.
    • Dooliga
      The best write up on CPD's I've come across (and I've been trying to read everything I can find on them). Fantastic photos too. From the first time I read about and watched CPD's online I wanted some with a clear intent to breed them. It took me over 6 months to find some CPDs in a LFS to purchase (could have got some shipped earlier, but hated the idea of them not surviving as they are not cheap in Australia). Finally I found and bought 20 less than a week ago. Fitted right in with my community tank, colour improving daily. A tank to house them in is maturing and intend to pick out a few to see if they will breed there to start with. Plan is to get breeding tanks set-up soon and looking forward to trying some of the methods explained pretty clearly in this article. Hope I remember to come back here and share my experience. Thanks S1l3nt!

      Dooliga
       
×